Available online at http://www.ijims.com
ISSN: 2348-0343

A Cross Sectional study to determine prevalence of overweight and obesity and its association with Hypertension and Diabetes in Kungher

 (RHTC Area) population of GMERS Medical College-Dharpur Patan.Nilesh Thakor ${ }^{1}$, Sunil Nayak ${ }^{1}$, Dipak Prajapati ${ }^{2}$ and Jignesh Chauhan ${ }^{1}$
1. Dept. of Community Medicine,Gujarat Medical Education and Research Society (GMERS) Medical College, Dharpur-Patan,Gujarat-India
2. Dept. of Pathology, GMERS Medical college, Dharpur-Patan, Gujarat-India
* Corresponding author: Nilesh Thakor

Abstract

Obesity is a well-known risk factor of hypertension and diabetes. This study was aimed to investigate the prevalence of overweight and obesity in Kungher (Rural Health Training Center Field Practicing Area) population and to evaluate its relationship with hypertension and diabetes. This Cross sectional study comprises of 163 subjects attending a local medical camp between 25-70 years of age. Height, weight, BMI, systolic and diastolic blood pressure, fasting blood sugar and post prandial blood sugar were determined using standard methods. It was found that the prevalence of overweight and obesity was 15% and 34% respectively and it was predominant among women than men. Systolic blood pressure, diastolic blood pressure and post prandial blood sugar were significantly elevated in obese subjects than in normal BMI subjects (control). It was concluded that the results showed a higher trend of hypertension and diabetes with increase in BMI.

Keywords: Obesity, Hypertension, Diabetes, Overweight, RHTC

Introduction

The issue of overweight and obesity has become a serious public health concern throughout the world in the past few decades. In India, it has reached epidemic proportion in the $21^{\text {st }}$ century with morbid obesity affecting 5% of the country's population. ${ }^{[1]}$ Although the terms overweight and obesity are often used interchangeably, overweight refers to an excess of body weight compared with height; obesity refers to an excess of body fat. BMI is the most widely used measure to define obesity. It is determined by dividing weight (wt.) in kilograms by height (ht) in meters square. ${ }^{[2]}$ A desirable BMI according to the WHO recommended cut-offs for Asians is considered to be between 18.5 and $22.9 \mathrm{~kg} / \mathrm{m} 2$. A BMI of $23-24.9 \mathrm{~kg} / \mathrm{m}^{2}$ is defined as overweight and $>25 \mathrm{~kg} / \mathrm{m}^{2}$ as 'obese'. ${ }^{[3]} \mathrm{A}$ strong association has been depicted between BMI and mortality among Asian populations. ${ }^{[4]}$ BMI is also positively and independently associated with morbidity and mortality from hypertension and type II diabetes mellitus. ${ }^{[5]}$ Relationships between obesity and the risk for hypertension and diabetes should be assessed early, if not, it might lead to micro and macro vascular complications. Though the association of BMI with hypertension and diabetes has long been the subject of epidemiological research, it has not been sufficiently explored in rural population. Hence
the present study was aimed to find the prevalence of overweight and obesity in this segment of rural population and to explore the relation of BMI with hypertension and diabetes.

Materials and Methods

A cross sectional study was carried out in 163 participants attending a free medical camp at Kungher(RHTC Area) village, belonging to the age group 25-70. Gender-wise distribution of 163 subjects was 92 males and 71 females. BMI was measured from height and weight using the standard protocol of Weiner and Lourie. ${ }^{[6]}$ Height was measured using height measuring scale with 0.1 cm division value and weight using potable weighing machine without shoes. Blood pressure was determined using the standard mercury sphygmomanometer. Normal BP is defined as less than $120 / 80 \mathrm{mmHg}$, pre-hypertension as $120-139 / 80-89 \mathrm{mmHg}$, stage I hypertension as $140-159$ / $90-99 \mathrm{mmHg}$, and stage II hypertension as equal to and above $160 / 100 \mathrm{mmHg} .{ }^{[7]}$ Fasting and post prandial blood sugar was determined using glucometer. Written informed consent was obtained from all subjects.

STATISTICAL ANALYSIS:

Statistical analysis of data was done using SPSS (trial version). Values are expressed as mean value. Standard deviation was done to obtain accuracy. One way ANOVA was performed to determine the significance and P value less than 0.05 was considered significant.

Results and Discussion

Total participants who attended the free medical camp were divided into 4 groups based on BMI namely, normal, underweight, overweight and obese. Figure 1 shows the prevalence of overweight, obesity, hypertension and diabetes in Kungher(RHTC Area) population. Among 163 participants screened, overweight and obese subjects correspond to 15% and 34% respectively. Occurrence of underweight subjects was 16%. Prevalence of obesity was found to be quite high in this rural community as it is almost in par with the normal population (35\%). In the past, the overweight prevalence was traditionally higher in urban areas. However, the opposite trend applies nowadays. This could be because subjects living in rural areas have poorer access to health care and they practice medical selfcare less. ${ }^{[8]}$ Increase in body weight may also be due to the change in lifestyle factors which, has also started affecting the rural community like fat-rich diet, increased energy intake and low energy output due to lesser involvement in physical activities.

Based on gender, overweight and obesity were predominant among female (9% and 19%) that in male (6% and 15%). Similar observations have been reported in India by Gothankar. ${ }^{[1]}$ Worldwide, gender differences are more pronounced, with 10% of men and 14% of women obese. ${ }^{[9]}$ Similarly, the prevalence of hypertension and diabetes were 20% and 11% respectively. Hypertension was more pronounced among male (13%) than in female (7%), which is consistent with the findings of Humayunet al. ${ }^{[10]}$ whereas much difference was not observed in diabetic subjects of both gender. However in obese subjects, Bhatet al. ${ }^{[11]}$ has reported high prevalence of hypertension in female than in male.

Table 1 gives the mean values of various parameters in different categories of BMI. In case of obese subjects, Systolic BP (136.60 mmHg), Diastolic BP (86.96 mmHg) and post-prandial blood sugar ($160.59 \mathrm{mg} / \mathrm{dl}$)
were significantly elevated than in that of normal BMI subjects ($122.45 \mathrm{mmHg}, 78.07 \mathrm{mmHg}$ and $134.26 \mathrm{mg} / \mathrm{dl})$. In case of overweight and underweight subjects, significant variation was observed in all the parameters with the exception of post prandial blood sugar level ($141.12 \mathrm{mg} / \mathrm{dl}$) in overweight subjects.

The relationship between BMI and hypertension is of particular interest to developing countries as excess cardiovascular mortality among lean hypertensive subjects has been reported in some longitudinal studies. ${ }^{[12]}$ The association between hypertension and BMI is evident from table 2. In normal and underweight subjects majority of them are in the pre-hypertension stage (65\%). In overweight subjects, the \% of population in pre-hypertension stage is more (71%) and also 12% in stage I hypertension. Similarly in obese population 16% in stage I and 22% in stage II hypertension respectively. The important point is that only obese patients are in stage II hypertension. This clearly indicates the positive association of hypertension with BMI. This is consistent with the findings of Mungreiphyet al., ${ }^{[4]}$ Humayunet al., ${ }^{[10]}$ and Ahmed et al. ${ }^{[13]}$

Table 3 gives the distribution of IGT (Impaired Glucose Tolerance) and diabetic subjects in different categories of BMI. Prevalence of diabetes in overweight and obese subjects was 25% and 18% respectively, whereas in normal population it is only 3%. Diabetes prevalence was significantly higher in overweight and obese subjects than in normal-weight subjects. Among overweight and obese subjects 42% and 46% are in IGT condition. Gothankar, ${ }^{[1]}$ have also reported a positive association of BMI with diabetes. BMI is an indicator of obesity and would be a possible indicator of the risk of Diabetes Mellitus. ${ }^{[9]}$

Conclusion

Overweight and obesity has become a major health problem in this rural community. The study also indicates a positive association of BMI with hypertension and diabetes. Significant number of subjects are seen in pre-hypertension and IGT condition which clearly indicates and the need of creating awareness regarding overweight and obesity and related chronic diseases like hypertension and diabetes which would otherwise become emerging problems in the near future.

References

1. Gothankar JS. Prevalence of obesity and its associated comorbidities amongst adults. National .
2. Low S, Chin MC, Ma S, Heng Journal of Community Medicine. 2011, 2 (2): 221-224.
3. BrownCD, HigginsM, DonatoKA, Rohde FC, Garrison R, Obarzanek E, Ernst ND, Horan M. Body Mass Index and the Prevalence of Hypertension and Dyslipidemia. Obesity Research. 2000, 8: 605-619.
4. DM, Deurenberg Y. Rationale for Redefining Obesity in Asians. Ann AcadMed Singapore. 2009, 38:66-74.
5. Mungreiphy NK, Kapoor S, Sinha R. Association between BMI, Blood Pressure, and Age: Study among Tangkhul Naga Tribal Males of Northeast India. Journal of Anthropology.2011,2011:6.
6. Pi-Sunyer, FX. Medical hazards of obesity. Annals of Internal Medicine. 1993, 119 (7): 655-660.
7. Weiner JS, Lourie JA. Practical Human Biology, Academic Press, London, UK,1981.
8. Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL. Harrison's Principle of Internal Medicine. Vol.1. ($15^{\text {th }}$ edn). New York: Tata McGraw- Hill publishers. 2001. Pp- 571-578.
9. Hernandez-Mijares A, Sola-Izquierdo E, Ballester-Mecho F, Mari-Herrero MT, Gilabert-Moles JV, GimenoClemente N, Morales-Suarez-Varela M. Obesity and overweight prevalences in rural and urban populations in

East Spain and its association with undiagnosed hypertension and Diabetes Mellitus: a cross-sectional populationbased survey. BMC Res Notes. 2009, $2: 151-154$.
10. World Health Organization. Global Health Observatory. Obes Res. 2002, 10(5):345-50.
11. Humayun A, Shah AS, Sultana R. Relation of hypertension with BMI and age in male and female population of Peshwar, Pakistan. J Ayub Med Coll Abbottabad. 2009, 21(3): 63-65.
12. Bhat NA, Kamili MA, Allaqaband GQ. Hypertension in South Kashmir. Indian Pract. 2002, 55(4):215-218.
13. Tesfaye F, Nawi NG, Minh HV, Bypass P, Berhane Y, Bonita R, Wall S. Association between BMI and BP across 3 populations in Africa and Asia. J Human Hypertension. 2007, 21: 28-37.
14. Ahmad R, Khan TM, Zulfiqar S, Marwat MA, Rehman I. Role of Body Mass Index (BMI) in the development of hypertension in adult population of District Swat. Biomedica. 2007, 23:39-41.

Tables and Figures:

Table 1. Mean values of various parameters in different BMI classes

S.No.	BMI classes	Systolic BP mm/Hg	Diastolic BP $\mathbf{m m} / \mathbf{H g}$	Fasting blood sugar $\mathbf{m g} / \mathbf{d l}$	Post prandial blood sugar $\mathbf{m g} / \mathbf{d l}$
1	Normal weight $(\mathrm{n}=57)$	$122.45(10.90)$	$78.07(5.48)$	$103.24(17.45)$	$134.26(24.09)$
2	Underweight $(\mathrm{n}=26)$	$118.8(9.08)$	$78.46(6.12)$	$97.11(14.42)$	$131.5(14.89)$
3	Overweight $(\mathrm{n}=24)$	$125.83(10.17)$	$78.33(6.37)$	$107.54(12.97)$	$141.12(21.20)^{*}$
4	Obese $(\mathrm{n}=56)$	$136.60(16.65)^{* *}$	$86.96(10.43)^{*}$	$105.92(12.18)$	$160.59(39.49)^{*}$

Values are represented as mean (standard deviation) , *Values are significant at 5% level , ,**Values are significant at 1% level
Table 2. Distribution of subjects in different categories of BMI and BP

S.No.	BMI classes	Normal BP	Pre- hypertension	Stage I hypertension	Stage II hypertension
1	Normal weight $(\mathrm{n}=57)$	$20(35 \%)$	$37(65 \%)$	--	--
2	Underweight $(\mathrm{n}=26)$	$9(35 \%)$	$17(65 \%)$	--	--
3	Overweight $(\mathrm{n}=24)$	$4(17 \%)$	$17(71 \%)$	$3(12 \%)$	$12(22 \%)$
4	Obese $(\mathrm{n}=56)$	$3(5 \%)$	$32(57 \%)$	$9(16 \%)$	$-{ }^{2}$

Values are expressed as No. of subjects and their percentage in parenthesis

Table 3. Prevalence of IGT and Diabetes in different categories of BMI

S.No.	BMI classes	Normal blood sugar	IGT	Diabetes
1	Normal weight $(\mathrm{n}=57)$	$45(79 \%)$	$10(18 \%)$	$2(3 \%)$
2	Underweight $(\mathrm{n}=26)$	$22(85 \%)$	$4(15 \%)$	--
3	Overweight $(\mathrm{n}=24)$	$20(36 \%)$	$26(46 \%)$	$10(18 \%)$
4	Obese $(\mathrm{n}=56)$		$6(25 \%)$	

Values are expressed as No. of subjects and their percentage in parenthesis

Fig 1. Gender- wise occurrence of overweight and obesity and its associated disorders in Kungher(RHTC Area) population

